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Dynamics of the maximum marginal likelihood hyperparameter estimation in image restoration:
Gradient descent versus expectation and maximization algorithm
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Dynamical properties of image restoration and hyperparameter estimation are investigated by means of
statistical mechanics. We introduce an exactly solvable model for image restoration and derive differential
equations with respect to macroscopic quantities. From these equations, we evaluate relaxation processes of the
system to the equilibrium state. Our statistical mechanical approach also enables us to investigate the hyper-
parameter estimation by means of maximization of the marginal likelihood by using gradient descent and the
expectation and maximization algorithm from the dynamical point of view.
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I. INTRODUCTION

As a typical massive system, image restoration based
the Markov random field~MRF! model has been investigate
by the statistical mechanical technique of disordered s
systems@1–4#. Among these results, statistical mechani
analysis succeeded in evaluating the measure of succes
image restoration and made the hyperparameter depend
clear @2–4#. However, all of that research was restricted
studies of static properties of image restoration. In the c
text of the Bayesian statistical approach, we usually use
Markov chain Monte Carlo~MCMC! method to obtain a
maximum a posteriori~MAP! estimate by simulated annea
ing @5#, or to calculate expectations over posterior distrib
tion for maximum posterior marginal~MPM! estimation@6#.
In the recent study by Nishimori and Wong@2#, they intro-
duced an infinite range mean-field version of the MRF mo
and calculated the overlap between the original image
restored one analytically. However, they did not investig
the dynamical process of image restoration, that is to say
process of the MCMC method by Glauber dynamics to
tain the MPM estimate. Although it is worthwhile to inve
tigate such dynamical processes in image restoration, r
tively little progress has been made in the theoreti
understanding of them. Recently, Inoue and Carlucci@4# in-
vestigated dynamical properties of gray-scale image rest
tion using the mean-fieldQ-Ising spin glass model analyti
cally. They found that the MPM estimate gets worse than
degraded image when one fails to set the hyperparame
appropriately. Therefore, it is important to study how w
should infer the optimal hyperparameters. As an approac
estimate the optimal hyperparameters, themaximum mar-
ginal likelihood~MML ! method has been used by many a
thors in practical situations@7,18#. If one maximizes the mar
ginal likelihood by gradient descent, Boltzmann machin
type learning equations are obtained and these equa
contain expectations over both posterior and prior distri
tions. In order to carry out those expectations, we usually
the MCMC method. However, it is hard to evaluate the p
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formance of the MML estimation due to difficulties in simu
lating the thermodynamically equilibrium state within re
able precision. Therefore, we need some analytical
rigorous studies on the hyperparameter estimation. O
ously, the learning process of the hyperparameter estima
and the stochastic process of the MCMC method asdynam-
ics. From the viewpoint of statistical mechanics of spin sy
tems, the process of the hyperparameter estimation is
garded as a dynamics of the spin system in which coup
constant and field strength are time-dependent variab
Then, the time dependence of these variables is determ
by the algorithm we choose to maximize the marginal lik
lihood. As far as we know, no studies have ever tried
investigate those dynamical properties analytically. In t
paper, we investigate dynamical properties of image rest
tion including hyperparameter estimation by using the sta
tical mechanical technique.

This paper is organized as follows. In Sec. II, according
Nishimori and Wong@2#, we explain statistical mechanica
formulation of image restoration in the context of the MP
estimation. In Sec. III we derive differential equations wi
respect to macroscopic observables of the infinite ra
mean-field MRF model from the microscopic Master equ
tion. By solving these differential equations, we discuss
relaxation process of image restoration. In Sec. IV margi
likelihood as a function of hyperparameters is calculated
the replica method. We also derive Boltzmann machine-t
learning equations to maximize the marginal likelihood
gradient descent. Flows in hyperparameter space are
tained by analyzing the learning equations. In the same
tion, we investigate the performance of the EM~expectation
and maximization! algorithm @8# which is widely used to
estimate hyperparameters from incomplete data sets.
well known that the EM algorithm shows faster convergen
at the beginning of the algorithm than some other algorit
does. However, there is no study to make this property c
by using some solvable models. In this section we comp
the performance of the EM algorithm with that of gradie
descent explicitly. Section V is devoted to the summary.
©2001 The American Physical Society25-1
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II. STATISTICAL MECHANICAL FORMULATION FOR
IMAGE RESTORATION

In this section we explain how we formulate image res
ration as a problem of a disordered spin system. Accordin
Nishimori and Wong@2#, we consider a black and while im
age. Then, an original image is denoted by anN-dimensional
vector $j%[(j1 ,j2 , . . . ,jN) and each pixelj i takes 61.
These pixels are located on an arbitrary lattice in two dim
sion. In order to treat image restoration by statistical m
chanics of disordered spin systems, we should assume
the original image is given bya priori Boltzmann-Gibbs
distribution

P~$j%!5

expS bs(
i j

j ij j D
Zs

, Zs5(
j

expS bs(
i j

j ij j D ,

~1!

where( i j (•••) is carried out for all nearest neighboring pi
els. Thus, we use a snapshot of the MCMC simulation for
ferromagnetic Ising model as an original image.Ts([bs

21)
appearing in the argument of the exponential~1! corresponds
to temperature. We obtain pictures of all black or all wh
when we setTs→0, while we obtain random noise picture
in the limit of Ts→`. A particular original image$j% is
degraded to a particular damaged picture$t%
[(t1 ,t2 ,•••,tN) by a noise channel represented by the f
lowing conditional probability:

P~$t%u$j%!5

expS bt(
i

t ij i D
~2 coshbt!

N
, ~2!

where the sum( i(•••) is carried out for all pixels and we
assumed that each pixel is degraded independently.bt rep-
resents a noise level of the channel because the above
pression is rewritten asP(2j i uj i)5p512P(j i uj i) with p
5e2bt/(ebt1e2bt) for all pixels independently. Therefore
this kind of noise is referred to as thebinary symmetric chan-
nel ~BSC!.

The BSC is easily extended to theGaussian channel~GC!
as follows:

P~$t%u$j%!5
1

~A2pt!N
expS 2

(
i

~t i2t0j i !
2

2t2
D

5FGC~$t%!expS t0

t2 (
i

t ij i D , ~3!

FGC~$t%![
1

~A2pt!N
expS 2

(
i

~t i
21t0

2!

2t2
D . ~4!

If we replaceFGC($t%) appearing in Eq.~3! by
01612
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FBSC~$t%![
1

~2 coshbt!
N)i

$d~t i21!1d~t i11!% ~5!

with t0 /t25bt , the BSC@Eq. ~2!# is recovered. We should
notice that a sum(tV($t%) for an arbitrary functionV($t%)
is calculated in terms ofFGC,BSC($t%) as

(
t

V~$t%!5E •••E d$t%FGC,BSC~$t%!V~$t%!, ~6!

where we definedd$t%[dt1dt2•••dtN . Then, Bayes theo-
rem gives the posterior distribution

P~$s%u$t%!5
P~$t%u$s%!P~$s%!

(
s

P~$t%u$s%!P~$s%!

5
eJS i j s is j 1hS it is i

(
s

eJS i j s is j 1hS it is i

, ~7!

whereJ andh are hyperparameters and we introduced m
els of the prior@Eq. ~1!# and the likelihood@Eq. ~2!# as

P~$s%!5

expS J(
i j

s is j D
ZP

,

P~$t%u$s%!5

expS h(
i

t is i D
ZL

, ~8!

respectively. A configuration$s%[(s1 ,s2 , . . . ,sN) de-
notes an estimate of a particular original image$j%. ZP and
ZL in Eq. ~8! are normalization constants given by

ZP5(
s

expS J(
i j

s is j D , ZL5(
t

expS h(
i

t is i D .

~9!

It is important for us to bear in mind thatZL is independent
of $s% for both the BSC and the GC. Actually,ZL leads to

ZL5E •••E d$t%FBSC~$t%!expS h(
i

t is i D
5S 2 coshh

2 coshbt
D N

~10!

for the BSC and
5-2
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ZL5E •••E d$t%FGC~$t%!expS h(
i

t is i D
5expS 2

Nt0
2

2t2
1

Nt2h2

2 D ~11!

for the GC.
In the context of MAP estimation, we choose the estim

$s% as a grand state of the following Hamiltonian~cost func-
tion!:

H~$s%!52J(
i j

s is j2h(
i

t is i . ~12!

In order to obtain the grand state, we usually use simula
annealing@9# or mean field annealing@10#.

On the other hand, in the context of MPM estimation,
first calculate the marginal distribution around a single pi
s i :

P~s i u$t%!5 (
$s%Þs i

P~$s%u$t%! ~13!

and we choose the sign of the difference betweenP(s i5
11u$t%) andP(s521u$t%) as an estimate of thei th pixel
ĵ i as

ĵ i5argmaxs i
P~s i u$t%!5sgnS (

s i561
P~s i u$t%! D

5sgnS (
s

s i P~$s%u$t%!

(
s

P~$s%u$t%!
D [sgn~^s i&J,h!. ~14!

In this expression, we defined^s i&J,h as an average of thei th
pixel s i over the posterior distribution~7! and this is written
explicitly as

^s i&J,h5

(
s

s ie
JS i j s is j 1hS it is i

(
s

eJS i j s is j 1hS it is i

. ~15!

This corresponds to a local magnetization of the spin sys
that is described by the HamiltonianH($s%) at temperature
T51. Thus, in order to investigate properties of the MP
estimation for image restoration, we should study the rand
field Ising model described byH($s%). Then, we are inter-
ested in the quantity

M ~J,h![(
j,t

P~$j%!P~$t%u$j%!j isgn~^s i&J,h!, ~16!

which means the averaged overlap between an arbit
original pixel j i and the MPM estimateĵ i5sgn(̂ s i&J,h).
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Apparently, the best restoration of the original image
achieved when the overlapM is as close to 1 as possible. Fo
this averaged overlapM (J,h), the next inequality holds@2#,

M ~J,h!<M ~bs ,bt!. ~17!

This inequality means that the averaged overlapM takes its
maximum when one sets the hyperparameters to their
values, namely,J5bs andh5bt . However, it is impossible
to derive the hyperparameter dependence of the ove
around its optimal valueM (bs ,bt) from the above inequal-
ity. To investigate this dependence, Nishimori and Wong@2#
introduced a mean-field version of the MRF model and c
culated the overlap as a function ofJ andh. The mean-field
model is rather an artificial model in which every pixel
connected to the others; however, this model is very usefu
discuss the behavior of macroscopic quantities of the syst
like the overlapM. Using the replica method@11#, one ob-
tains saddle point equations

m0[
1

N (
i

j i5tanh~bsm0!, ~18!

m[
1

N (
i

s i5

(
j

ebsm0j

2 cosh~bsm0!
E

2`

`

Dx tanh~Jm1thx

1t0hj!, ~19!

M[
1

N (
i

j i ĵ i5

(
j

ebsm0j

2 cosh~bsm0!
E

2`

`

Dxj sgn~Jm1thx

1t0hj!, ~20!

where we defined the Gaussian integral measure byDx

[dx e2x2/2/A2p. Equation ~18! determines macroscopi
properties of the original image given by the Hamiltoni
2( i j j ij j at temperatureTs([bs

21). From a statistical me-
chanical point of view,m0 corresponds to the magnetizatio
of the mean-field ferromagnetic Ising model. For a givenTs ,
one obtainsm0 by solving Eq.~18!. SubstitutingTs , m0, and
noise parameterst0 ~a center of Gaussian! andt ~a standard
deviation! into Eq.~19!, one obtains magnetizationm for the
restored image system$s% as a function ofTm([J21) andh.
Then, one substitutesm(Tm ,h) into the expression ofM, and
finds the hyperparameter dependence of the overlap ex
itly. In Fig. 1 we plot the overlapM as a function of 1/J
([Tm). We sett5t051 (bt5t0 /t251) and temperature
of the original image is chosen asTs50.9. The overlap for
the two cases of the fieldh, namely,h5btTsJ5t0TsJ/t2

50.9J[hopt ~a! andh51 ~b! are shown. We should notic
that the MAP estimate is obtained in the limit ofTm→0
keeping the ratioh/J constant. Therefore, the overlap for th
MAP estimate depends on the ratioh/J and takes its maxi-
mum when we seth/J5btTs50.9 @see Fig. 1~a!#. From this
figure we see that the overlap takes its maximum atTm
5-3
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5Ts50.9 andh5bt5t0 /t251. In the next section, we fo
cus our attention on the dynamics of the MPM estimatio

III. DYNAMICS OF IMAGE RESTORATION

In the preceding section we showed the performance
the MPM estimation. However, in those calculations we
sumed that the system already reached the equilibrium s
In other words, each state$s% obeys the Boltzmann-Gibb
distribution;e2H($s%). When we need to generate the dist
bution to calculate the MPM estimate sgn(^s i&J,h), we often
use the MCMC method and simulate the equilibrium sta
on computer. Therefore, it is important to study how t
system relaxes to its equilibrium state and grasp the beha
of time evolutionary observables analytically. As far as
know, there is no research to deal with dynamics of ima
restoration including hyperparameter estimation analytica
In this section, for the infinite range mean-field MRF mod
we derive differential equations with respect to macrosco
order parameters of the restored image system from the
croscopic master equation.

First of all, we should remember that a transition ra
wk($s%) from $s%[(s1 ,s2 , . . . ,sk , . . . ,sN) to $s%8
[(s1 ,s2 , . . . ,2sk , . . . ,sN) leads to

wk~$s%!5
1

2
$12sktanh@hk~$s%!#%,

hk~$s%!5
J

N (
j

s j1htk ~21!

in the context of the Glauber dynamics of the MCM
method. It is important for us to bear in mind that the Ham
tonianH($s%) of the system is rewritten in terms ofhk($s%)
as

FIG. 1. 1/J([Tm) dependence of the overlapM. The tempera-
ture of the original image isTs50.9 and the noise level isbt

5t0 /t251(t05t51). We set the field h as h5btTsJ
5(t0Ts /t2)J50.9J[hopt ~a! and h51 ~b!. In the limit of 1/J
→0, we obtain the overlap of the MAP estimation. In both cases~a!
and ~b!, the overlapM takes its maximum atTm5Ts50.9.
01612
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H~$s%!52(
k

hk~$s%!sk , ~22!

where we rescaled the couplingJ as J/N to take a proper
thermodynamic limit~the Hamiltonian should be of orde
N).

Then, probabilitypt($s%) that the system visits a stat
$s% at time t obeys the master equation

dpt~$s%!

dt
5 (

k51

N

@pt„Fk~$s%!…wk„Fk~$s%!…

2pt~$s%!wk~$s%!#, ~23!

where we defined single spin flip operatorFk by

Fk~$s%!5~s1 ,s2 , . . . ,2sk , . . . ,sN!5$s%8. ~24!

Distribution Pt(m,a), which is the probability that the sys
tem has macroscopic order parameters

m~$s%![
1

N (
i

s i , a~$s%![
1

N (
i

t is i ~25!

at timet, is written in terms of the distributionpt($s%) of the
microscopic state$s% as

Pt~m,a!5(
s

pt~$s%!d„m2m~$s%!…d„a2a~$s%!…,

~26!

where d(•••) is a delta function. Taking a derivative o
Pt(m,a) with respect tot and substituting Eq.~23! into this
expression and making a Taylor expansion in powers
2sk /N and 2tksk /N ~the so-calledKramers-Moyal expan-
sion!, we obtain

dPt~m,a!

dt
5

]

]m
Pt~m,a!H m2

(
j

ebsm0j

2 cosh~bsm0!

3E
2`

`

Dx tanh~Jm1htx1ht0j!J
1

]

]a
Pt~m,a!H a2

(
j

ebsm0j

2 cosh~bsm0!

3E
2`

`

Dx~tx1t0j!tanh~Jm1htx1ht0j!J
1O~N21!. ~27!

Thus, we derived the time-dependent distribution of mac
scopic quantities from the microscopic master equation,
5-4
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~23!. Finally, we construct differential equations with respe
to the macroscopic quantitiesm anda. Substituting a form of
distribution

Pt~m,a!5d„m2m~ t !…d„a2a~ t !… ~28!

into Eq. ~27! and calculating some integrals, we obtain

dm

dt
52m1

(
j

ebsm0j

2 cosh~bsm0!
E

2`

`

Dx tanh~Jm1htx1ht0j!,

~29!

da

dt
52a1

(
j

ebsm0j

2 cosh~bsm0!
E

2`

`

Dx~tx1t0j!tanh~Jm1htx

1ht0j!. ~30!

These two equations describe a relaxation of the system
the equilibrium state. We should notice that the order para
etera is a slave variable in the sense that the order param
m relaxes independently, whereas the relaxation ofa depends
on m. Therefore, the behavior ofa is completely determined
by m. For this reason, from now on, we disregard Eq.~30!.

It is easy to see that in the limit oft→` anddm/dt50,
the saddle point equation~19! is recovered. As the overlapM
is written in terms ofm @see Eq.~20!#, the time evolution of
the overlap is obtained by substituting the time depende
of the magnetizationm(t) into the expression ofM.

Using the same technique as the procedure to derive
differential equation with respect tom, the differential equa-
tion for the magnetizationm1 of the prior systemP($s%)
5exp(J(ijsisj)/(sexp(J(ijsisj) is obtained as

dm1

dt
52m11tanh~m1J!. ~31!

Although in these equations we regard the hyperparameteJ
and h as constant variables, one should treat them as ti
dependent parameters, that is,J(t) andh(t) from the view-
point of hyperparameter estimation. Of course, details of
time dependence ofJ(t) and h(t) depend on a particula
algorithm the of hyperparameter estimation. In the next s
tion we investigate properties of hyperparameter estima
as a dynamical process of the coupling constantJ(t) and the
field strengthh(t).

IV. HYPER-PARAMETER ESTIMATION

In Secs. II and III we investigated both static and dynam
cal properties of image restoration. From those results,
obtained hyperparameter dependence of the overlap ex
itly. Moreover, for a particular constant hyperparameter
(J,h), we derived the differential equations which descri
the relaxation of the system. As one of the authors repo
in @4#, if one fails to set the hyperparameters appropriat
the restored image gets worse than the degraded imag
01612
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practical situations, we do not know the optimal value of t
hyperparameters before we carry out the MCMC simu
tions. Therefore, we need to determine the optimal value
using only information about the degraded image$t%. Of
course, it is possible for us to construct some robust al
rithms for hyperparameter tuning and several authors
ported such algorithms based onselective freezing@13# or
quantum fluctuation@14#. However, if one seeks the optima
restoration, hyperparameter estimation becomes a very
portant problem.

About ten years ago, Iba@12# studied the performance o
the MML method with the assistance of the MCMC simul
tions for the same problem as ours. However, as he m
tioned in his paper, the results are not enough to make
performance clear due to the difficulties of simulating t
equilibrium state within reliable precision. With this fact i
mind, in this section we calculate the marginal likelihood
a function of hyperparameters analytically. From the m
ginal likelihood, we derive Boltzmann machine-type learni
equations and investigate their behavior quantitatively.

A. Maximum marginal likelihood method

In statistics, the maximum marginal likelihood~MML !
method is used to infer hyperparameters appearing in
posterior distribution@1,7,15#. In the context of image resto
ration, marginal likelihood~the logarithm of marginal likeli-
hood! is given by

2K~J,h:$j,t%![ log(
s

P~$t%u$s%!P~$s%!

5 logS (
s

eJS i j s is j 1hS it is i D 2 logZP

2 logZL , ~32!

whereZP andZL are given by Eq.~9!. We should remembe
thatZL is independent of$s% for both cases of the BSC an
the GC. Usually, we attempt to maximize the marginal lik
lihood by using gradient descent with respect toJ andh. This
result leads to the following Boltzmann machine-type lea
ing equations:

cJ

dJ

dt
52

]K~J,h:$j,t%!

]J

5

(
s

S (
i j

s is j DeJS i j s is j 1hS it is i

(
s

eJS i j s is j 1hS it is i

2

(
s

S (
i j

s is j DeJS i j s is j

(
s

eJS i j s is j

, ~33!
5-5
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ch

dh

dt
52

]K~J,h:$j,t%!

]h

5

(
s

S (
i

t is i DeJS i j s is j 1hS it is i

(
s

eJS i j s is j 1hS it is i

2
] logZL

]h
,

~34!

wherecJ andch are relaxation times. Thus, by solving the
two equations, we maximize the marginal likelihoo
2K(J,h:$j,t%) and obtain the values of hyperparameters
a fixed point of the equations. Then, we should notice t
these two equations contain expectations of the quant
( i j s is j and( it is i over the posterior and the prior distribu
tions. Therefore, when we solve Eqs.~33! and ~34! numeri-
cally, we should calculate these expectations at each
step of the Euler method. Iba@12# carried out the MCMC
method to calculate the expectations and evaluated time
pendence of the hyperparametersJ andh numerically. How-
ever, the accuracy of his computer simulation is not relia
because the time to simulate the equilibrium state is
enough. Accordingly, it is worthwhile to investigate the pe
formance of the MML method analytically using the solvab
model. In this section, we use the infinite range mean-fi
MRF model and solve the learning equations~33! and ~34!
exactly.

As our interest is an averaged performance of the M
method, we should calculate the averaged marginal lik
hood,

2@K~J,h:$j,t%!#$j,t%5F log(
s

e(J/N)S i j s is j 1hS it is iG
$j,t%

2F log(
s

e(J/N)S i j s is j G
$j,t%

2@ logZL#$j,t% , ~35!

where the bracket@•••#$j,t% means the average over the d
tribution P($t%u$j%)P($j%) and the sum( i j (•••) should be
carried out for all pairs of pixels. We should keep in min
that we rescaled the coupling constant asJ/N to make the
averaged marginal likelihood~difference of free energy! of
orderN. In general, it is hard to carry out this kind of ave
age, namely,@ logZ#$j,t% . Then, we replace the average wi
an average of thenth moment ofZ, that is,Zn by using

@ logZ#$j,t%5 lim
n→0

@Zn#$j,t%21

n
. ~36!

This is referred to as thereplica method@11#. By using the
replica method, we obtain the averaged marginal likeliho
per pixel as
01612
s
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e
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L
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d

2
@K~J,h:$j,t%!#$j,t%

N

52
J

2
m21

(
j

ebsm0j

2 cosh~bsm0!
E

2`

`

Dx log@2

3cosh~Jm1htx1ht0j!#1
J

2
m1

22 log 2cosh~m1J!

1
t0

2t2
2

t2h2

2
[2K~J,h!, ~37!

wherem andm1 are magnetizations of the spin systems d
scribed by the posterior and the prior, respectively. It sho
be noticed that as we used the GC@Eqs. ~3! and ~4!#, the
average@ logZL#$j,t% simply led to (Nh2/2)2(Nt0/2t2) @see
Eq. ~11!#.

In Fig. 2, we plot the averaged marginal likelihood as
function of J and h. In this figure we see that the average
marginal likelihood takes its maximum when we choose
hyperparameters (J,h) so as to be identical to their true va
ues (bs51/Ts51.1,bt5t0 /t251) ~we set t05t51,Ts
50.9). This fact is easily checked by the following inequa
ity @16#:

$2@K~bs ,bt :$j,t%!#$j,t%%2$2@K~J,h:$j,t%!#$j,t%%

5(
j,t

Pbt
~$t%u$j%!Pbs

~$j%!log(
s

Pbt
~$t%u$s%!

3Pbs
~$s%!2(

j,t
Pbt

~$t%u$j%!

3Pbs
~$j%!log(

s
Ph~$t%u$s%!PJ~$s%!

5(
t

Pbs ,bt
~$t%!log~Pbs ,bt

~$t%!/PJ,h~$t%!!>0, ~38!

where we used the non-negativity ofKullback-Libeler infor-
mationand we defined

PX~$t%u$s%![

expS X(
i

t is i D
(

t
expS X(

i
t is i D ,

PX~$t%u$j%![

expS X(
i

t ij i D
(

t
expS X(

i
t ij i D , ~39!

PY~$s%![

expS Y(
i j

s is j D
(
s

expS Y(
i j

s is j D ,
5-6
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PY~$j%![

expS Y(
i j

j ij j D
(

j
expS Y(

i j
j ij j D , ~40!

PX,Y~$t%![(
s

PX~$t%u$s%!PY~$s%!

5(
j

PX~$t%u$j%!PY~$j%!. ~41!

Thus, we confirm that our mean-field model is not agai
this general inequality. We should mention that the sta
properties of the hyperparameter estimation were inve
gated by several authors using the generalized Gaus
model@17#, mean-field approximation@1#, and cluster varia-
tion method@18#.

FIG. 2. J dependence of the averaged marginal likelihood2K
~upper figure!. We seth50.5,1 andh51.5. We see that2K takes
its maximum when we chooseJ,h as J51.1(51/Ts) and h5bt

51. h dependence of the averaged marginal likelihood2K ~lower
figure!. We setJ50.5,1 andJ52.1. We see that2K takes its
maximum when we chooseJ,h as J51.15(1/Ts) and h5bt51.
For both figures, we chose (m,m1) as a solution of Eq.~19! and
m15tanh(Jm1) for J51/Ts andh5bt .
01612
t
c
ti-
ian

For the marginal likelihood~35!, averaged learning equa
tions with respect toJ and h are obtained by the gradien
descent

cJ

dJ

dt
52F]K~J,h:$j,t%!

]J G
$j,t%

,

ch

]h

]t
52F]K~J,h:$j,t%!

]h G
$j,t%

. ~42!

The right-hand sides of the above equations are also ev
ated by the replica method. After some algebra, we obta

cJ

dJ

dt
52

m2

2
1m

(
j

ebsm0j

2 cosh~bsm0!
E

2`

`

Dx

3tanh~Jm1htx1ht0j!1
m1

2

2
2m1tanh~m1J!,

~43!

ch

dh

dt
5

(
j

ebsm0j

2 cosh~bsm0!
E

2`

`

Dx~tx1t0j!

3tanh~Jm1htx1ht0j!2t2h, ~44!

where we should remember thatm and m1 obey the differ-
ential equations

dm

dt
52m1

(
j

ebsm0j

2 cosh~bsm0!
E

2`

`

Dx tanh~Jm1htx1ht0j!,

~45!

dm1

dt
52m11tanh~m1J!. ~46!

By solving these coupled equations, we obtain time dep
dences of the hyperparametersJ(t),h(t) and relaxation pro-
cess of the systems, namely,m(t),m1(t). In this paper we fix
the relaxation times ascJ5ch51.

In Fig. 3 we plot time dependences of the hyperpara
etersJ,h and order parametersm,m1. From this figure we
see that the final state of the hyperparameters is optim
namely, (J* ,h* )[(1/Ts ,bt5t0 /t2)5(1.1,1) and this con-
vergent point is independent of the initial conditions. Tim
evolutions of the overlapM are also plotted in Fig. 4~upper
figure!. We find that the overlapM converges to the bes
possible value in Fig. 1. In Fig. 5 we plot flows of hype
parameterJ-h. From this figure, we find that each flow doe
not take the shortest path to the solution and goes a long
around the solution.

B. EM algorithm

In the preceding section we investigated the process of
MML method by gradient decent as a dynamics. In this s
5-7
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FIG. 3. From the upper left to the
lower right, time dependences of th
hyperparametersJ, h and the magne-
tizations m, m1 are plotted. In
each graph, we choose the initial con
dition ~a! J(0)50.45,h(0)51,m(0)
5m1(0)50.4; ~b! J(0)50.45,h(0)
50.5,m(0)5m1(0)50.4; ~c! J(0)
52.25,h(0)51,m(0)5m1(0)50.4;
~d! J(0)52.25,h(0)50.5,m(0)
5m1(0)50.4. We set true values o
the hyperparametersTs50.9, bt51.
c-

m

tion we analyze the performance of theEM algorithm@8# as
another candidate to maximize the marginal likelihood.

In the EM algorithm, we first average the logarithmi
likelihood function

log P~$t%u$s%!P~$s%![
J

N (
i j

s is j1h(
i

t is i

2 log(
s

expS J

N (
i j

s is j D
1

Nt0

2t2
2

Nt2h2

2
~47!

over the time-dependent posterior distribution

Pt~$s%u$t%![
e(Jt /N)( i j s is j 1ht( it is i

(
s

e(Jt /N)( i j s is j 1ht( it is i

. ~48!

This average is referred to as aQ function. As we are inter-
ested in the averaged behavior of theQ function, we need the
following averagedQ function:
01612
Q~J,huJt ,ht!

[F(
s

Pt~$s%u$t%!log P~$t%u$s%!P~$s%!G
$j,t%

5JF (
s

S (
i j

s is j De(Jt /N)S i j s is j 1htS it is i

(
s

e(Jt /N)S i j s is j 1ht( it is i
G

$j,t%

1hF (
s

S (
i

t is i De(Jt /N)S i j s is j 1htS it is i

(
s

e(Jt /N)S i j s is j 1htS it is i
G

$j,t%

2 log (
s

expS J

N (
i j

s is j D 1
Nt0

2

2t2
2

Nt2h2

2
,

~49!

where we divided the coupling constantsJ and Jt by N to
take a proper thermodynamic limit. Then, the EM algorith
is summarized as follows.

~i! Step 1. Set initial values of the hyperparametersJ0 , h0,
and t←0.
5-8
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~ii ! Step 2. Iterate the following E~expectation! and M
~maximization! steps until an appropriate convergence co
dition is satisfied. For the E step: calculateQ(J,huJt ,ht). For
the M step: updateJt andht by

Jt115argmaxJQ~J,huJt ,ht!

ht115argmaxhQ~J,huJt ,ht!,

and

t←t11.

For our infinite range mean-field MRF model, the averag
@•••#$j,t% in Eq. ~49! are calculated by using the replic
method and we obtain

FIG. 4. Time dependences of the overlapM for the case of the
MML by gradient descent~upper figure! and the case of the EM
algorithm~lower figure!. For both cases, we choose the initial co
dition as ~a! J(0)50.45, h(0)51, m(0)5m1(0)50.4; ~b! J(0)
50.45, h(0)50.5, m(0)5m1(0)50.4; ~c! J(0)52.25, h(0)51,
m(0)5m1(0)50.4; ~d! J(0)52.25, h(0)50.5, m(0)5m1(0)
50.4. We set true values of the hyperparametersTs50.9, bt51.
We see that for both cases, the optimal overlapMopt is obtained as
a fixed point of the dynamics.
01612
-

s

Q~J,huJt ,ht!

N
52

Jm~ t !2

2
1

Jm~ t !(
j

ebsm0j

2 cosh~bsm0!

3E
2`

`

Dx tanh@Jtm~ t !1httx1htt0j#

1

h(
j

ebsm0j

2 cosh~bsm0!
E

2`

`

Dx~tx1t0j!

3tanh@Jtm~ t !1httx1htt0j#1
J

2
m1~ t !2

2 log 2 cosh@m1~ t !J#1
t0

2

2t2
2

t2h2

2
. ~50!

At the next time step,Jt11 andht11 are given by the condi-

FIG. 5. Flows in the hyperparameter space (J,h). We set the
initial conditions J(0)5J050.45, h(0)5h051, and m(0)
5m1(0)50.4 ~upper figure! and J(0)5J052.25, h(0)5h051
andm(0)5m1(0)50.4 ~lower figure!. True values of the hyperpa
rameters areJ* 51/Ts51.1, h* 5bt51. For the case of gradien
descent ~GD!, the flows go a long way around the solutio
(J* ,h* )5(1.1,1). In order to compare the MML by gradient d
scent with the EM algorithm, we also plot flows of the EM alg
rithm ~EM!. We see that the EM algorithm takes shorter paths th
the MML by gradient descent.
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FIG. 6. From the upper left to
the lower right, time dependence
of the hyperparametersJ, h and
the magnetizationsm, m1 for the
EM algorithm are plotted. In each
graph, we choose the initial condi
tion ~a! J050.45, h051, m(0)
5m1(0)50.4; ~b! J050.45, h0

50.5, m(0)5m1(0)50.4; ~c!
J052.25, h051, m(0)5m1(0)
50.4; ~d! J052.25, h050.5,
m(0)5m1(0)50.4. We set true
values of the hyperparameter
Ts50.9, bt51.
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tions ]Q/]J50 and]Q/]h50. These two conditions lea
to nonlinear maps

Jt115
1

m~ t !
tanh21F 2

$m~ t !22m1~ t !2%2

2m1~ t !

1

m~ t !(
j

ebsm0j

2m1~ t !cosh~bsm0!

3E
2`

`

Dx tanh@Jtm~ t !1httx1httj#G , ~51!

ht115

(
j

ebsm0j

2t2cosh~bsm0!
E

2`

`

Dx~tx1t0j!

3tanh@Jtm~ t !1httx1htt0j#. ~52!

In the above nonlinear maps,m(t) and m1(t) are time-
dependent magnetizations for the systems described by
posteriorP($s%u$t%) and the the priorP($s%), respectively.
01612
he

By using mean-field treatment, we obtain nonlinear ma
with respect tom(t) andm1(t) as

m~ t11!5

(
j

ebsm0j

2 cosh~bsm0!
E

2`

`

Dx

3tanh@Jtm~ t !1httx1htt0j#, ~53!

m1~ t11!5tanh@Jtm1~ t !#. ~54!

By solving these nonlinear maps, Eqs.~51!–~54!, we obtain
the time dependence of the hyperparametersJt ,ht and the
magnetizationsm(t),m1(t). We plot the results in Fig. 4
~lower figure!, Fig. 5, and Fig. 6. From these figures we s
that both the MML method by gradient descent and the E
algorithm obtain the optimal hyperparameters (J* ,h* )
5(1.1,1); however, the EM algorithm shows faster conv
gence than the MML by gradient descent. In addition,
flows of the EM algorithm in the hyperparameter space
shorter than those of the MML by gradient descent. From
posterior distribution appearing in theQ function ~49!, we
see that performance of the EM algorithm highly depends
the initial choice of the hyperparametersJ0 and h0. There-
fore, for the systems which have lots of local minima, t
final solution is sensitive to the initial condition on the h
5-10
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perparameters. However, for our model system~the infinite
range random field Ising model!, there is no local minima in
the marginal likelihood function. As a result, the final state
the EM algorithm is independent of the initial conditions.

V. SUMMARY

In this paper we investigated dynamical properties of i
age restoration by using statistical mechanics. We introdu
an infinite range mean-field version of the MRF model a
solved it analytically. We derived differential equations wi
respect to the macroscopic order parameters from the m
scopic Master equation. We also studied dynamics of hy
parameter estimation in the context of the maximum m
ginal likelihood method by using gradient descent and
EM algorithm. For the MML method by gradient desce
Boltzmann machine-type learning equations were evalua
analytically by the replica method. On the other hand,
EM algorithm led to nonlinear maps and these maps w
also evaluated analytically. We compared these two a
rithms and found that for both algorithms we obtain the o
c

er

In
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timal hyperparameters. We also found that the speed of c
vergence for the EM algorithm is faster than that of t
MML method by gradient descent. In addition, the paths
the solution in hyperparameter space by the EM algorit
are shorter than those of the MML by gradient descent. Th
in this paper, we could compare two different methods
estimate hyperparameters without any computer simulatio
Our analytical treatments are applicable to studies of per
mance for the other method, including thedeterministic an-
nealing EM algorithm@19,20#. Moreover, besides image res
toration, our approach is useful for the other problems,
example, learning by Bayesian neural networks@21,22#, time
series predictions@23#, or the density estimation problem
@24#.
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